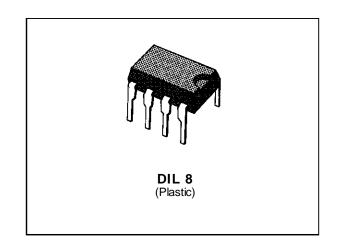


LS5018B LS5060B/LS5120B

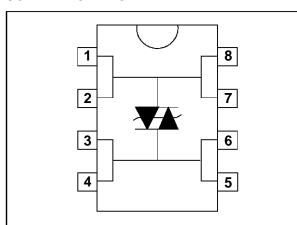
TRISIL

FEATURES

- BIDIRECTIONAL CROWBAR PROTECTION.
- BREAKDOWN VOLTAGE RANGE: FROM 18 V To 120 V.
- HOLDING CURRENT = 200 mA min.
- HIGH SURGE CURRENT CAPABILITY IPP = 100A 10/1000 μs


DESCRIPTION

The LS50xxB series has been designed to protect telecommunication equipment against lightning and transients induced by AC power lines.

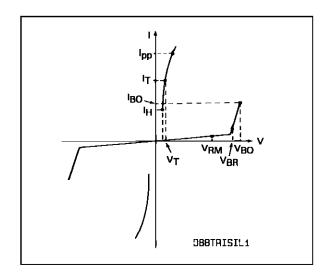

Its high surge current capability makes the LS50xxB a reliable protection device for very exposed equipment, or when series resistors are very low.

IN ACCORDANCE WITH FOLLOWING STANDARDS:

CCITT K17 - K20	{	10/700 μs 5/310 μs	1.5 kV 38 A
VDE 0433	{	10/700 μs 5/200 μs	2 kV 50 A
CNET	{	0.5/700 μs 0.2/310 μs	1.5 kV 38 A

SCHEMATIC DIAGRAM

ABSOLUTE RATINGS (limiting values) (- $40^{\circ}C \le T_{amb} \le +85^{\circ}C$)


Symbol	Parameter	Value	Unit	
lpp	Peak pulse current	10/1000 μs 8/20 μs	100 250	А
ITSM	Non repetitive surge peak on-state current	tp = 20 ms	50	А
di/dt	Critical rate of rise of on-state current	Non repetitive	100	A/μs
dv/dt	Critical rate of rise of off-state voltage	67% V _{BR}	5	KV/μs
T _{stg} Tj	Storage and operating junction temperature ran	- 40 to + 150 150	°C	

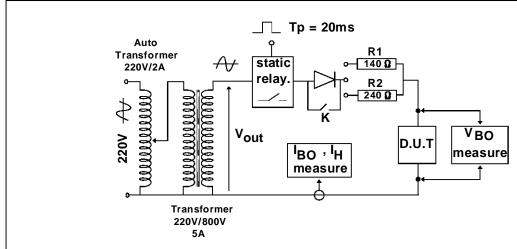
THERMAL RESISTANCE

Symbol	Parameter	Value	Unit
R _{th} (j-a)	Junction-to-ambient	80	°C/W

ELECTRICAL CHARACTERISTICS.

Symbol	Parameter					
V _{RM}	Stand-off voltage					
V _{BR}	Breakdown voltage					
VBO	Breakover voltage					
lΗ	Holding current					
VT	On-state voltage @ IT					
I _{BO}	Breakover current					
lpp	Peak pulse current					

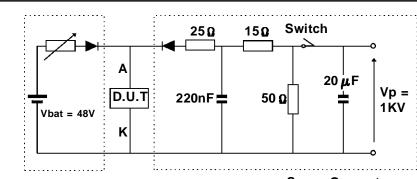
Туре	I _{RM} @ V _{RM}		VBR	@ I R	V _{BO}	@	Во	lн	٧T	С
	max		min		max	min	max	min	max	max
						note 1		note 1	note 2	note 3
	μ Α	٧	٧	mA	V	mA	mA	mA	٧	pF
LS5018B	5	16	17	1	22		1300	200	3	150
LS5060B	10	50	60	1	85		1000	200	3	150
LS5120B	20	100	120	1	180	500	1250	250	3	150


All parameters tested at 25°C, except where indicated.

See the reference test circuit for $I_H,\ I_{BO}$ and V_{BO} parameters. Square pulse $T_P=500\mu s$ - $I_T=1A.$ $V_R=5\ V,\ \ F=1MHz.$

Note 2:

Note 3:

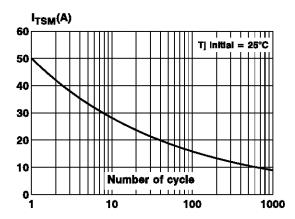

REFERENCE TEST CIRCUIT FOR IH, IBO and VBO parameters:

TEST PROCEDURE:

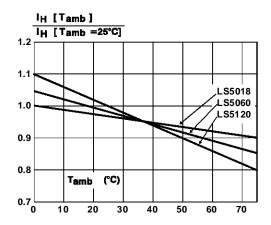
- Pulse Test duration (Tp = 20ms):
 - For Bidirectional devices = Switch K is closed
 - For Unidirectional devices = Switch K is open.
- Vour Selection
 - Device with $V_{BR} \le 150 \text{ Volt}$
 - Vout = 250 V_{RMS}, R_1 = 140 Ω .
 - Device with $V_{BR} \ge 150 \text{ Volt}$
 - $V_{OUT} = 480 V_{RMS}$, $R_2 = 240 \Omega$.

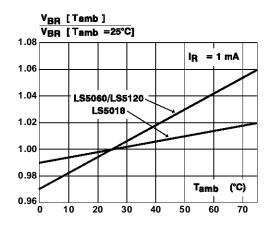
FUNCTIONAL HOLDING CURRENT (IH) TEST CIRCUIT = GO - NOGO TEST.

Surge Generator 10/700 µsec Vp =1KV / Ipp = 25A


This is a GO-NOGO Test which allows to confirm the holding current (I_H) level in a functional test circuit. This test can be performed if the reference test circuit can't be implemented.

TEST PROCEDURE:


- 1) Adjust the current level at the I_H value by short circuiting the AK of the D.U.T.
 - 2) Fire the D.U.T with a surge Current : Ipp = 25A, $10/700 \mu s$.
 - 3) The D.U.T will come back to the OFF-State within a duration of 50 ms max.


Figure 1: Non repetitive surge peak on state current versus number of cycles. (with sinusoïdal pluse: F = 50 Hz).

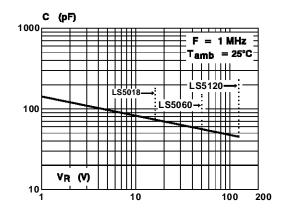

Figure 2: Relative variation of holding current versus ambient temperature.

Figure 3 : Relative variation of breakdown voltage versus ambient temperature.

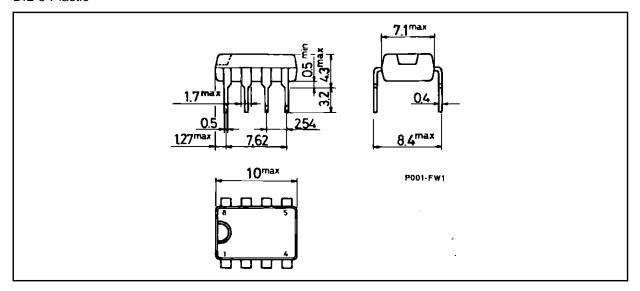


Figure 4: Junction capacitance versus reverse applied voltage.

PACKAGE MECHANICAL DATA (in millimeters).

DIL 8 Plastic

MARKING: Logo, Date Code,part Number.

PACKAGING: Products supplied in antistatic tubes.

Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsability for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may results from its use. No license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of SGS-THOMSON Microelectonics.

© 1994 SGS-THOMSON Microelectronics - All Rights Reserved

Purchase of l^2C Components by SGS-THOMSON Microelectronics, conveys a licence under the Philips l^2C Patent. Rights to use these components in an l^2C system, is grantede provided that the system conforms to the l^2C Standard Specification as defined by Philips.

SGS-THOMSON Microelectronics GROUP OF COMPANIES

Australia - Brazil - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco - The Netherlands -

Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A